原標題:亞馬遜云科技不斷降低生成式AI門檻,加速大模型應用
什么是Agent?在大模型語境下,可以理解成能自主理解、規(guī)劃、執(zhí)行復雜任務的系統(tǒng)。Agent也將成為新的起點,成為各行各業(yè)構建新一代AI應用必不可少的組成部分。
對此,初創(chuàng)公司Seednapse AI創(chuàng)始人提出構建AI應用的五層基石理論,受到業(yè)界關注。
Models,也就是我們熟悉的調(diào)用大模型API。
Prompt Templates,在提示詞中引入變量以適應用戶輸入的提示模版。
Chains,對模型的鏈式調(diào)用,以上一個輸出為下一個輸入的一部分。
Agent,能自主執(zhí)行鏈式調(diào)用,以及訪問外部工具。
Multi-Agent,多個Agent共享一部分記憶,自主分工相互協(xié)作。
創(chuàng)業(yè)先鋒之外,連AI基礎設施的巨頭也已經(jīng)開始在Agent上發(fā)力。
比如亞馬遜云科技紐約峰會上宣布的Amazon Bedrock Agents新功能,便是這種趨勢最有代表性的體現(xiàn)。
Amazon Bedrock Agents在全托管基礎模型服務的基礎上,又把開發(fā)、部署和管理多個Agent的能力打包集成在一起。如果按照前面的五層基石理論,這類服務相當于直接從第五層開始,大大降低開發(fā)門檻。正如亞馬遜云科技在發(fā)布會上所形容:只用幾次點擊,搞定能執(zhí)行任務的生成式AI應用。
Agent,AI應用新時代的起點
怎樣才算一個Agent應用?OpenAI華人科學家翁麗蓮給出直觀的“配方”:Agent =大模型+記憶+主動規(guī)劃+工具使用
以亞馬遜云科技平臺為例,開發(fā)Agent應用首先要根據(jù)具體任務場景給Agent選擇合適的基礎模型。Amazon Bedrock上除了自家的Amazon Titan大模型,還集結了擅長安全可控的Anthropic、擅長檢索匯總信息的Cohere、以及專攻文生圖的stability.ai等各家模型。選好后,把要執(zhí)行的任務指令直接用文字描述出來,讓Agent明白要扮演的角色和要完成的目標。指令可以是包括一系列“問題-思考步驟-行動步驟-示例”的結構化提示詞,在ReAct(協(xié)同推理和行動)技術支持下,基礎模型可以通過推理和決策找出相應的解決方案。
接下來的重頭戲便是Add Action Group(添加動作組)。Agent要完成的具體任務,以及能使用的工具如企業(yè)系統(tǒng)API、Lambda函數(shù)等都是在這里設置。官方演示中是一個保險索賠管理場景,Agent通過提取未結索賠的列表、確定每個索賠的未完成文書工作并向保單持有人發(fā)送提醒來管理保險索賠。所有動作組設置好后,創(chuàng)建Agent和部署都是幾次點擊就能完成。
部署完成后,在測試中就可以看到Agent理解用戶請求、將任務分解為多個步驟(收集未結保險索賠、查找索賠ID、發(fā)送提醒)并執(zhí)行相應的操作。Amazon Bedrock通過向導式交互界面,減少了配置基礎模型所需的編碼工作量。動作組提供調(diào)用API實現(xiàn)特定功能,以及使用自己的數(shù)據(jù)構建差異化應用程序,又讓基礎模型能夠完成更復雜的實際業(yè)務任務。
在整個流程中,還可以配合亞馬遜云科技平臺上的各種安全服務。比如使用PrivateLin建立基礎模型和本地網(wǎng)絡之間的私有連接,所有流量都不會暴露給互聯(lián)網(wǎng)。又通過提供完全托管的服務,讓開發(fā)者不需要管理底層系統(tǒng)就能發(fā)揮基礎模型的能力。最終縮短從基礎模型到實際應用的周期,加速基礎模型為業(yè)務創(chuàng)造的價值。
加速大模型應用,還應關注什么
有了Amazon Bedrock的Agent能力,我們得以快速將大模型投入實際業(yè)務,為企業(yè)實現(xiàn)降本增效或創(chuàng)新。但要真正利用生成式AI的全部價值、發(fā)揮全部潛力,并與其他競爭對手拉開潛力,私有數(shù)據(jù)才是其中根本。換言之,大模型應用落地的關鍵,是企業(yè)自己寶貴的行業(yè)數(shù)據(jù)。
如何集成這些豐富的資源到我們的Agent之中,保證我們的大模型應用在執(zhí)行任務時能夠高效訪問到正確的信息——是當下每一個企業(yè)都要面對的問題。當然,這一切都必須以保證隱私為前提。
除了私有數(shù)據(jù)的集成和調(diào)用,在大模型應用落地的路上,最為底層的支撐,算力,也始終是一個百說不厭的話題。眾所周知,當下的顯卡資源異常稀缺,且價格不菲。無論是購買還是租用,這都成了全球各企業(yè)在探索生成式AI應用上的一大筆支出。如何讓這一筆花銷更為經(jīng)濟實惠?這也是每個企業(yè)的思慮所在。
值得關注的是,以馬遜云科技為代表的領先供應商,正在針對生成式AI落地過程中的這些挑戰(zhàn)和痛點提供系統(tǒng)性的解決方案,對上述問題一一破解。針對個性化數(shù)據(jù)問題,亞馬遜云科技宣布為三款數(shù)據(jù)服務提供向量引擎,用來助力生成式AI應用與業(yè)務整合。在生成式AI爆發(fā)之后,向量數(shù)據(jù)庫也實在火爆不已。因為相比傳統(tǒng)的關系數(shù)據(jù)庫,它能給予與模型上下文更相關的響應。
亞馬遜云科技這一 服務,就是將我們的私有數(shù)據(jù)存儲到具有向量引擎的數(shù)據(jù)庫中,在進行生成式AI應用時,通過簡單的API調(diào)用就能方便地查詢企業(yè)內(nèi)部的數(shù)據(jù)。
而根據(jù)當前數(shù)據(jù)存儲位置、對數(shù)據(jù)庫技術的熟悉程度、向量維度的擴展、Embeddings的數(shù)量和性能需求等不同需求,亞馬遜云科技提供了3個選項來滿足:
Amazon Aurora PostgreSQL兼容版關系型數(shù)據(jù)庫,支持pgvector開源向量相似性搜索插件;
分布式搜索和分析服務Amazon OpenSearch,帶有k-NN(k最近鄰)插件和適用于Amazon OpenSearch Serverless的向量引擎;
兼容PostgreSQL的Amazon RDS(Amazon Relational Database Service)關系型數(shù)據(jù)庫,支持pgvector插件。
當然,最值得說道的是這次 推出的Amazon OpenSearch Serverless服務,它最大的優(yōu)點就是讓企業(yè)只關心向量數(shù)據(jù)的存儲和檢索,而不用背上任何底層運維的負擔。
解決完數(shù)據(jù)集成問題,在底層支撐上,亞馬遜云科技這次也直接推出H100支持的全新Amazon EC2 P5實例,這一曾經(jīng)對于大多數(shù)企業(yè)都相當難得的算力資源,現(xiàn)在也變得“唾手可得”了。
據(jù)了解,該實例包含8個英偉達H100 Tensor Core GPU,640GB高帶寬GPU內(nèi)存,同時提供第三代AMD EPYC處理器、2TB 系統(tǒng)內(nèi)存和30TB本地NVMe存儲,以及3200Gbps的聚合網(wǎng)絡帶寬和GPUDirect RDMA支持,可實現(xiàn)更低延遲和高效的橫向擴展性能。相比上一代基于GPU的實例,Amazon EC2 P5可以讓訓練時間最多可縮短6倍(從幾天縮短到幾小時),降低高達40%的訓練成本。
再加上亞馬遜云科技之前基于自研芯片發(fā)布的Amazon EC2 Inf2和Amazon EC2 Trn1n等性能也表現(xiàn)不錯的實例,我們在算力需求這一問題上,可以說是有了非常多的按需選擇空間。
除了以上這些基礎支持,各種開箱即用的AI服務也不“缺席”。如針對開發(fā)環(huán)節(jié)的AI編程助手Amazon CodeWhisperer,現(xiàn)在它與Amazon Glue實現(xiàn)集成,將AI代碼生成的場景又擴展到一個新人群:數(shù)據(jù)工程師,只需自然語言(比如“利用json文件中的內(nèi)容創(chuàng)建一個Spark DataFrame”),這些開發(fā)人員即可搞定各種任務;再如針對商業(yè)智能(BI)的Amazon QuickSight,也能夠讓業(yè)務分析師們使用自然語言執(zhí)行日常任務,在幾秒鐘內(nèi)創(chuàng)建各種數(shù)據(jù)可視化圖表;還有Amazon HealthScribe,可以用于醫(yī)療行業(yè)生成臨床文檔,節(jié)省醫(yī)生時間。這些工具都是主打讓企業(yè)專注于核心業(yè)務,提高生產(chǎn)效率。
從今年4月起,亞馬遜云科技就結合自身定位并基于真實用戶需求出發(fā),正式宣布進軍生成式AI市場,為一切想要利用生成式AI技術加速或創(chuàng)新業(yè)務的企業(yè)提供服務。在短短的4個月期間,亞馬遜云科技已推出了各類底座資源,從基礎模型到算力支撐,從私人數(shù)據(jù)存儲到高效開發(fā)工具,應用盡有。
而這次在紐約峰會釋出的 動向,則是繼續(xù)加碼生成式AI應用開發(fā)所需的一切。從Amazon EC2 P5實例代表的算力層、到Amazon OpenSearch Serverless向量引擎、Amazon Bedrock Agents代表的工具層、再到Amazon QuickSight等代表的應用層,一項端到端的解決方案已然形成。
在這之中,亞馬遜云科技不斷降低生成式AI的門檻,無論是初創(chuàng)企業(yè)還是傳統(tǒng)行業(yè),無論是處于生成式AI進程的哪一層,都能在這里找到合適的工具,無需耗費太多精力在底層邏輯之上,便可快速投入實際業(yè)務。
如亞馬遜云科技數(shù)據(jù)庫、數(shù)據(jù)分析和機器學習全球副總裁Swami Sivasubramanian所說:我相信生成式AI將改變每一個應用程序、行業(yè)和企業(yè)。在各行各業(yè)都全力奔赴的這場全新技術變革之下,亞馬遜云科技的這一系列服務,無疑為普通玩家贏得了寶貴的時間和機會。
投稿郵箱:chuanbeiol@163.com 詳情請訪問川北在線:http://m.sanmuled.cn/